||  欢迎访问四川增财制造技术协会官方网站!     今天是: 返回首页  |  加入收藏  |  繁体中文  |  联系我们        
您的当前位置:首页 - 新闻动态 - 科普教育
3D打印主要成型工艺
发布时间:2018.06.04    新闻来源:整理于网络   浏览次数:

3D打印主要成型工艺

(一)SLA 3D打印工艺

1986年,3D Systems公司创始人Charles Hull发明了光固化成型技术。光固化成型法(StereoLithography,SL或SLA)是指利用紫外光照射液态光敏树脂发生聚合反应,来逐层固化并生成三维实体的成型方式。目前,3D打印技术以SLA的研究最为深入,也商业化的最早。

1、SLA工艺原理

FDM工艺利用紫外线照射液体光敏树脂使其固化,加工过程中平台会逐层沉入树脂槽。

液槽中盛满液态光敏树脂,紫外波长的激光束在偏转镜作用下于液面上,按截面轮廓信息扫描,光点经过的地方,受辐射的液体就固化。这样,一次平面扫描便加工出一个与分层平面图形相对应的层面,并与前一层已固化部分牢固地粘结起来,如此反复直到整个工件完成。采用 SLA工艺的工件一般还需要后续处理,包括清洗、去支撑、打磨、再固化等,以得到符合要求的产品。

FDM成型工艺对于悬臂部位需要支撑,产品和支撑为同一种材质。对于彩色模型,需要后期上色处理。

2、SLA工艺的优势、劣势

1)精度高、表面光滑、可加工大尺寸产品

2)树脂种类繁多以满足各种性能需求

3)成型件强度力学性能较差,强度、刚度、耐热性能有限,产品通常不适合长期使用

4)设备价格较高,打印速度较慢,材料较贵

3、SLA工艺应用范围

1)快速加工高精度、高表面质量、多细节手板样件,可用于外观验证、装配校核,某些情况下可用于功能测试。

2)针对特殊要求有相应的特性材料(通常用于短时间),比如耐热树脂。

3)打印产品表面质量好、精度高,可用于铸造模具。

(二)Polyjet3D打印工艺

2000年,以色列Objet公司申请了PolyJet聚合物喷射技术专利,该公司已于2011年被美国Stratasys公司收购。PolyJet技术的成型原理与3DP有点类似,但喷射的不是粘合剂而是树脂材料。在不同的3D打印公司,对PolyJet工艺的称呼不尽相同(如3DSystems公司称MJP:MultiJet Printing),但其工作原理是一致的。

1、Polyjet工艺的原理

PolyJet技术采用的是阵列式喷头,根据模型切片数据,几百至数千个阵列式喷头逐层喷射液体光敏树脂于平台。

工作时喷射打印头沿XY 平面运动,当光敏聚合材料被喷射到工作台上后,滚轮把喷射的树脂表面处理平整,UV紫外光灯对光敏聚合材料进行固化。完成一层的喷射打印和固化后,设备内置的工作台会极其精准地下降一个成型层厚,喷头继续喷射光敏聚合材料进行下一层的打印和固化。

如此反复,直到整个工件打印制作完成。

在悬臂结构处需要支撑,支撑材料通常与模型材料不同,工件成型的过程中将使用两种以上类型的光敏树脂材料。PolyJet技术可在机外混合多种基础材料,得到性能更为优异的新材料,极大扩展了该技术在各领域的应用。

2、Polyjet工艺的优势、劣势

1)可同时喷射不同材料,适合多种材料、多色材料同时打印,满足不同颜色、透明度、刚度等需求。

2)加工精度高,打印层厚低至16微米,产品细节体现非常好。

3)产品通常不适合长期使用。

4)材料价格贵,更换材料、打印过程材料消耗比SLA大,产品成本高。 

3、Polyjet工艺应用范围

1)加工多材料、多颜色混合原型,也可以加工透明产品,常用于外观与装配测试。

2)精度高、表面细节好的铸造模具。

3)制造小批量注塑模具。

(三)3DP 3D打印工艺

立体喷墨打印法(Three-Dimension Printing,3DP)是出现很早的一种3D打印技术。1993年由MIT发明,1995年 Z Corporation公司获得专属授权,2011年被3D Systems收购(技术名称更改为ColorJetPrinting)推出,是世界上最早的全彩色3D打印技术。国际上著名的3dp工艺公司还有ExOne、VoxelJet等。

1、3DP工艺的原理

从工作方式来看,三维印刷与传统二维喷墨打印最接近。与SLS工艺一样,3DP也是通过将粉末粘结成整体来制作零部件,不同之处在于,它不是通过激光熔融的方式粘结,而是通过喷头喷出的粘结剂。

其详细工作原理为:

1)3DP的供料方式与SLS一样,供料时将粉末通过水平压辊平辅于打印平台之上;

2)将带有颜色的胶水通过加压的方式输送到打印头中存储;

3)接下来打印的过程就很像2D的喷墨打印机了,首先系统会根据三维模型的颜色将彩色的胶水进行混合并选择性的喷在粉末平面上,粉末遇胶水后会粘结为实体;

4)一层粘结完成后,打印平台下降,水平压棍再次将粉末铺平,然后再开始新一层的粘结,如此的反复层层打印,直至整个模型粘结完毕;

5)打印完成后,回收未粘结的粉末,吹净模型表面的粉末,再次将模型用透明胶水浸泡,此时模型就具有了一定的强度。

理论上讲,任何可以制作成粉末状的材料都可以用3DP工艺成型,材料选择范围很广。

2、3DP工艺的优势、劣势

1)成型速度快,价格相对低廉,粉末通过粘结剂结合,而不是其他工艺在保护气氛下烧结。

2)可实现有渐变色的全彩色3D打印,可以完美体现设计师在色彩上的设计意图。

3)打印过程无需支撑材料,不但免除去除支撑的过程,而且也降低了使用成本。

4)可实现大型件的打印(目前最大可打印4米)。

5)产品力学性能差,强度、韧性相对较低,通常只能做样品展示,无法适用于功能性试验。

6)采用3DP技术的3D打印机,多用于砂模铸造、建筑、工艺品、动漫、影视等方面,目前有些3D照相馆也都是采用了3DP技术的3D打印机。

3、3DP工艺的应用

1)全彩色外观样件、装配原型。

2)某些条件下可生产毛坯零件,借助后期加工得到工业产品。如粘结金属粉末后期烧结并渗入金属液得到可使用零件。

3)铸造模样打印。

4)直接打印砂型、砂芯。

(四)SLM 3D打印工艺

1995年,德国Fraunhofer激光器研究所(Fraunhofer Institute for Laser Technology,ILT)最早提出了选择性激光熔融技术(Selective LaserMelting,SLM),用它能直接成型出接近完全致密度的金属零件。SLM技术克服了SLS技术制造金属零件工艺过程复杂的困扰。

SLS技术制造金属零件的方法主要有:

1)熔模铸造法:首先采用SLS技术成型高聚物(聚碳酸酯PC、聚苯乙烯PS等)原型零件,然后利用高聚物的热降解性,采用铸造技术成型金属零件;

2)砂型铸造法:首先利用覆膜砂成型零件型腔和砂芯(即直接制造砂型),然后浇铸出金属零件;

3)选择性激光间接烧结原型件法:高分子与金属的混合粉末或高分子包覆金属粉末经SLS成型,经脱脂、高温烧结、浸渍等工艺成型金属零件;

4)选择性激光直接烧结金属原型件法:首先将低熔点金属与高熔点金属粉末混合,其中低熔点金属粉末在成形过程中主要起粘结剂作用,然后利用SLS技术成型金属零件。最后对零件后处理,包括浸渍低熔点金属、高温烧结、热等静压(HotisostaticPressing,HIP)。

1、SLM工艺的原理

SLM是利用金属粉末在激光束的热作用下完全熔化、经冷却凝固而成型的一种技术。SLM与SLS制件过程非常相似,这里不再赘述。 

但是,SLM工艺一般需要添加支撑结构,其主要作用体现在:

1)承接下一层未成型粉末层,防止激光扫描到过厚的金属粉末层,发生塌陷;

2)由于成型过程中粉末受热熔化冷却后,内部存在收缩应力,导致零件发生翘曲等,支撑结构连接已成型部分与未成形部分,可有效抑制这种收缩,能使成型件保持应力平衡。

2、SLM工艺的优势、劣势

1)SLM工艺加工标准金属的致密度超过99%,良好的力学性能与传统工艺相当。

2)可加工材料种类持续增加,所加工零件可后期焊接。

3)价格昂贵,速度偏低。

4)精度和表面质量有限,可通过后期加工提高。

3、SLM工艺应用范围

1)加工标准金属的外观、装配、功能原型。

2)支撑零件,如夹具、固定装置等。

3)小批量零件生产。

4)注射模具。

(五)CLIP 3D打印工艺

2014年,连续液面生长(Continuous Liquid Interface Production,CLIP)工艺被申请专利。2015年3月20日,Carbon3D公司的CLIP技术登上了权威学术杂志 Science 的封面。CLIP本质上是SLA(或DLP)的改进,其原理并不复杂,底部的紫外光投影让光敏树脂固化,而氧抑制固化,水槽底部的液态树脂由于接触氧气而保持稳定的液态区域,这样就保证了固化的连续性。

1、CLIP工艺打印原理

CLIP工艺主要依赖于一种特殊的既透明又透气的窗口,该窗口同时允许光线和氧气通过。该机器能够控制氧的确切量和氧气被允许进入树脂池的时间。

氧气因此起到了抑制某些区域树脂固化的作用,而与此同时光线会固化那些没有暴露在氧气里的区域。也就是说,氧气能够在树脂内营造一个光固化的“盲区”,这种“盲区”最小可达几十微米厚(约为2-3个红细胞的直径)。

在这些区域里的树脂根本不能可能发生光聚合反应。然后该设备会使用UV光像放电影那样把3D模型的一系列横截面投射到里面。

这项技术最重要的两个优势,一个是打印速度快到了颠覆性程度,比传统的3D打印机要快25-100倍,理论上有提高到1000倍的潜力。

另外一个是分层理论上可以无限细腻:传统3D打印需要把3D模型切成很多层,类似于叠加幻灯片,这个原理就决定了粗糙无法消除,而连续液面生产模式在底部投影的光图像可以做到连续变化,相当于从叠加幻灯片进化成了叠加视频,虽然毫无疑问这个视频帧数也不是无限大,但是对比幻灯片的进步是巨大的。

使用连续生长的加工方式大大改善了产品的力学性能。传统的3D打印零件因为层状结构,其力学特性在各个方向上不同,特别是在堆叠的方向上,抗剪切性能很差。而连续液面生产的零部件的力学特性在各个方向保持一致,在实际应用中少了很多顾虑。

(六)EBM 3D打印工艺

电子束熔融成型法(ElectronBeam Melting,EBM)由Arcam公司发明,是金属增材制造的另一种方式。其工艺过程与SLM非常相似,最大的区别是能量源由激光换成了电子束。

1、EBM工艺的原理

电子束熔融(EBM)技术经过密集的深度研发,现已广泛应用于快速原型制作、快速制造、工装和生物医学工程等领域。EBM技术使用电子束,将金属粉末一层一层的融化生成完全致密的零件。

电子束由位于真空腔顶部的电子束枪生成。电子枪是固定的,而电子束则可以受控转向,到达整个加工区域。电子从一个丝极发射出来,当该丝极加热到一定温度时,就会放射电子。

电子在一个电场中被加速到光速的一半。然后由两个磁场对电子束进行控制。第一个磁场扮演电磁透镜的角色,负责将电子束聚焦到期望的直径。然后,第二个磁场将已聚焦的电子束转向到工作台上所需的工作点。

因具有直接加工复杂几何形状的能力,EBM工艺非常适于小批量复杂零件的直接量产。该工艺使零件定制化成为可能,而且为CAD to Metal工艺优化的零件,可以获得用其它制造技术无法形成的几何形状,因此,零件将因无与伦比的性能而对客户体现其价值。

该工艺直接使用CAD数据,一步到位,所以速度很快。设计师从完成设计开始,在24小时内即可获得全部功能细节。与砂模铸造或熔模精密铸造相比,使用该工艺,交货期将被显著缩短。

生产过程中,EBM和真空技术相结合,可获得高功率和良好的环境,从而确保材料性能优异。 

2、EBM工艺的优势、劣势

1)在窄光束上达到高功率的能力,能打印难熔金属,并且可以将不同的金属熔合。

2)真空环境排除了产生杂质的可能,譬如氧化物和氮化物,真空熔炼的质量可保证材料的高强度。

3)激光束式不实施预热,电子束式实施预热。电子束式的温差小,残余应力低,加工支撑所需较少。

4)EBM工艺加工过程中会预热粉末,粉末会呈现假烧结状态,不利于小孔、缝隙类特征打印,如1mm的孔易被粉末堵死。

5)EBM设备需要真空系统,硬件资金投入更高,而且需要维护。电子束技术的操作过程会产生X射线(解决方案:真空腔的合理设计可以完美的屏蔽射线。)

(七)MJF3D打印工艺

众所周知,MJF 3D打印工艺也是近年来刚兴起的3D打印工艺之一,主要由惠普公司研发。被称为是新兴增材制造技术的一大“中坚力量”。

1、MJF工艺的原理

对于MJF技术我们已经知道的是,其机器主要依靠两个不同的喷墨组件打造全彩的3D零部件,一个组件主要负责铺设打印材料,形成对象实体,另一个喷墨组件则负责喷涂、上色和融合,使部件获得所需要的强度和纹理。

该技术的工作方式简单来说就是:先铺一层粉末,然后喷射熔剂,与此同时还会喷射一种精细剂(detailingagent),以保证打印对象边缘的精细度,然后再在上面施加一次热源。

惠普公司表示,这将使其打印速度比选择性激光烧结(SLS)技术、熔融沉积成型(FDM)技术快10倍,而且不会牺牲部件的精细度。

2、MJF工艺的优势及劣势

该工艺能够简化工作流程并降低成本,实现快速成型;以突破性的经济效益实现零部件制造;降低了使用门槛、并支持各行业新应用的开放式材料与软件创新平台。

惠普3D打印业务总裁StephenNigro称,HP多喷嘴式熔融3D打印解决方案以业内的创新方式实现了高速度、高质量和低成本的有效结合。

这令企业和制造商可以重新思考为客户设计和交付解决方案的方式。

 
四川省科学技术协会    四川省经济和信息化委员会    四川省发展和改革委员会    成都市发展和改革委员会    成都市经济和信息化委员会    彭州公共信息网    成都航空动力产业园    
关于我们 合作单位 联系我们
协会简介
业务范围
组织架构
规章制度
彭州人才网
028-84560177
028-84560177
协会地址:四川省成都市彭州市致和镇护贤西二路138号38栋
微信公众号:sczc2017
E-MAIL:sczc2017@126.com
Copyright 2006 - 2024  四川增材制造技术协会(www.sczcxh.com)  All Right Reserved.    工信部备案编号:蜀ICP备18029350号-1
在线咨询
<p align=left>离开 在线咨询
<p align=left>离开 在线咨询